Areas of interest:  

We are focused on delineating the molecular mechanisms underlying the mutagenic and carcinogenic properties of certain environmental and endogenous carcinogens. These include polycyclic aromatic carcinogens, present in automobile exhaust, tobacco smoke and cooked foods, as well as reactive oxygen species and estrogen derivatives. These can cause reaction with DNA. This damaged DNA may initiate cancer by producing mutations during DNA replication. Our research centers on investigating replication and repair of the damaged DNA using computational approaches. We employ computer modeling, molecular mechanics and dynamics simulations and quantum mechanical calculations for structural and thermodynamic analyses, to connect structure and thermodynamics with biological function. We work in close collaboration with Professor Nicholas E. Geacintov of the NYU Chemistry Department who provides the experimental data that anchors our computational studies.


Principal Investigator:
Dr. Suse Broyde

(Click to view research interests)

List of Publications from PubMed

Research Movie Gallery




The Broyde Group Members

NYU Biology Department

NYU Chemistry Department



Cover image courtesy of Wiley-VCH

The Chemical Biology of DNA Damage. N. Geacintov, S. Broyde, Eds, Wiley-VCH. ISBN: 978-3-527-32295-4


Courtesy of Dr.Jin Yang


DNA cytosine methylation: structural and thermodynamic characterization of the epigenetic marking mechanism

Yang J, Lior-HOffmann L, Wang S, Zhang Y, Broyde S. Biochemistry 2013 Apr 23;52(16):2828-38.



Courtesy of Dr.Yuqin Cai


Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

Kropachev K, Kolbanovskiy M, Liu Z, Cai Y, Zhang L, Schwaid AG, Kolbanovskiy A, Ding S, Broyde S, and Geacintov NE Chem. Res. Toxicol. 2013 26(5):783-93


Cover image courtesy of Chemical Research in Toxicology


Nuclear magnetic resonance solution structures of covalent aromatic amine-DNA adducts and their mutagenic relevance.

Patel DJ, Mao B, Gu Z, Hingerty BE, Gorin A, Basu AK, Broyde S. Chem Res Toxicol. 1998 May;11(5):391-407. Invited Review Article


Cover image courtesy of Chemical Research in Toxicology


NMR solution structures of stereoisometric covalent polycyclic aromatic carcinogen-DNA adduct: principles, patterns, and diversity. Geacintov NE, Cosman M, Hingerty BE, Amin S, Broyde S, Patel DJ. Chem Res Toxicol. 1997 Feb;10(2):111-46.


Cover image courtesy of Nucleic Acids Research


Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context.

Rodriguez FA, Cai Y, Lin C, Tang Y, Kolbanovskiy A, Amin S, Patel DJ, Broyde S, Geacintov NE. Nucleic Acids Res. 2007;35(5):1555-68.

Cover image courtesy of Nucleic Acids Research


A new anti conformation for N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) allows Watson-Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4).

Wang L, Broyde S.Nucleic Acids Res. 2006 Feb 1;34(3):785-95.


Courtesy of Dr.Hong Mu


The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: Is there a correlation?

Lee YC, Cai Y, Mu H, Broyde S, Amin S, Chen X, Min JH, Geacintov NE, DNA Repair (Amst). DNA Repair (Amst). 2014 Jul;19:55-63.


Courtesy of Dr. Shuang Ding and Dr.Yuqin Cai


Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing

Tang Y., Liu Z., Ding S., Lin CH, Cai Y., Rodriguez FA, Sayer JM, Jerina DM, Amin S., Broyde S.,and Geacintov NE. Biochemistry 2012 51 (48)9751-62











(Click to download movie)

Courtesy of Dr. Hong Mu


Recognition of damaged DNA for nucleotide excision repair: a correlated motion mechanism with a mismatched cis-syn thymine dimer lesion

Hong Mu, Nicholas E. Geacintov, Yingkai Zhang, and Suse Broyde August 18, 2015 [Epub ahead of print] DOI:10.1021/acs.biochem.5b00840
PubMed Link


(Click to download movie)

Courtesy of Dr. Yuqin Cai


Differences in the access of lesions to the nucleotide excision repair machinery in nucleosomes

Cai Y, Kropachev K, Terzidis M, Masi A,Chatgilialoglu C, Vladimir Shafirovich,Geacintov NE, and Broyde S.(2015) Biochemistry.54(27):4181-5
DOI: 10.1021/acs.biochem.5b00564. Publication Date (Web): June 19, 2015
PubMed Link



(Click to download movie)
Courtesy of Dr. Yuqin Cai

PAH-damaged Nucleosome Core Particle
Y. Cai, L.Wang, S. Ding, A. Schwaid, N.E. Geacintov and S. Broyde. Biochemistry, 2010 49(46):9943-45.

Courtesy of Dr. Yuqin Cai


Structural basis for the recognition of diastereomeric 5',8-cyclo-2'-deoxypurine lesions by the human nucleotide excision repair system.

Kropachev K, Ding S, Terzidis MA, Masi A, Liu Z, Cai Y, Kolbanovskiy M, Chatgilialoglu C, Broyde S, Geacintov NE, Shafirovich V. DNA Repair (Amst). Nucleic Acids Res. 2014 Apr;42(8):5020-32.


(Click to download movie)

Courtesy of Dr. Yuqin Cai


Free energy profiles of base flipping in intercalative polycyclic aromatic hydrocarbon-damaged DNA duplexes: Energetic and structural relationships to nucleotide excision repair

Cai Y, Zheng H, Ding S, Kropachev K,Schwaid AG,Tang Y, Mu H, Wang S, Geacintov NE, Zhang Y, Broyde S. Chem. Res. Toxicol. 2013 26(7):1115-25



Courtesy of Dr.Hong Mu


The role of structural and energetic factors in regulating repair of a bulky DNA lesion with different opposite partner bases

Mu H, Kropachev K, Chen Y, Zhang H, Cai Y. Geacintov NE, Broyde S. Biochemistry, 2013, 52 (33), pp 5517-5521



(Click to download movie)
Courtesy of Dr. Yuqin Cai

Ribonucleotides as nucleotide excision repair substrates
Cai Y. Geacintov NE, Broyde S. DNA Repair (Amst). 2014 Jan;13:55-60.